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Abstract There are more than 50 matrix classes discussed in the literature of the Linear
Complementarity Problem. This guide is offered as a compendium of notations, definitions,
names, source information, and commentary on these many matrix classes. Also included
are discussions of certain properties possessed by some (but not all) of the matrix clas-
ses considered in this guide. These properties—fullness, completeness, reflectiveness, and
sign-change invariance—are the subject of another table featuring matrix classes that have
one or more of them. Still another feature of this work is a matrix class inclusion map depicting
relationships among the matrix classes listed herein.

Keywords Linear complementarity problem · Matrix classes · Structural properties ·
Inclusion map

1 Introduction

This paper is meant to serve as a useful guide to the scores of matrix classes that pop-
ulate the literature of the linear complementarity problem (LCP). Unconventional though
the paper may be, parts of it do have precedents, several of which are cited below. At this
point, it is my pleasure to acknowledge that two excellent conferences organized by Profes-
sor Franco Giannessi and held at the “E. Majorana” Centre for Scientific Culture (in Erice,
Sicily) stimulated my own efforts to assemble information of the sort contained in the present
article.

Awareness of the importance of matrix classes and their properties in the LCP developed
with that of the problem itself. It must be said, however, that the present-day abundance
of distinct matrix classes was not foreseen in the early days of the subject. Eaves [15] was
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probably the first to assign notations to the matrix classes he considered in his Ph.D. thesis
on the linear complementarity problem. This practice was carried forward by Lemke [27]
and Parsons [31]. Soon thereafter (1972), Karamardian [23] assigned names to some classes
that hitherto had been known only by their notations. He also depicted the inclusions that
were known to hold among the 12 matrix classes that had been identified in the literature.
Today, with more than 50 matrix classes to contend with, it is not easy for one to keep them
all in mind. Accordingly, this guide is offered as a compendium of notations, definitions,
names, source information, and commentary on these many matrix classes. An additional
noteworthy feature of this work is a matrix class inclusion map depicting relationships among
the matrix classes listed herein.

In this work, after a few preliminaries, there appears a list of matrix classes, their defini-
tions, their common names (if any), their source in the literature, and, in some cases, a note.
A bibliography at the end of the paper is included to facilitate the tracing of the sources of the
ideas presented. In a few cases, for instance, the notes attempt to untangle the complicated
history of certain matrix classes, especially with regard to their notation. In at least a few
cases, it has been discovered that new class-definitions and notations do not actually lead to
new classes. These, too, are pointed out in the notes.

Also included in the notes are discussions of certain properties possessed by some (but
by no means all) of the matrix classes considered in this guide. These properties—fullness,
completeness, reflectiveness, and sign-change invariance—are the subject of another table
featuring matrix classes that have one or more of them.

Over the years, many authors have compiled lists of matrix classes related to the LCP,
and a few authors have created diagrams indicating the inclusion relationships between
most of the matrix classes known at the time. Figure 5.1 in Richard Stone’s Ph.D. thesis
[33] was the most comprehensive as of 1981. The figure provided in the present document
modifies and extends Stone’s by including the many classes that have been identified since
then.

I have tried to make this catalog of matrix classes as exhaustive as possible, but I also
had to impose some limits. For example, the intersection of two (or more) matrix classes
occasionally gives a new class with interesting properties. Some are included in the list;
but it would be impractical (if not foolish) to consider the intersection of every pair of
these classes. A similar statement can be made for instances where one class is included in
another and their set-theoretic difference then becomes an object of study. With one excep-
tion, I have also chosen to not to include the classes of the “almost-this-or-that-matrix-class”
type.

2 A few preliminaries

A given vector q ∈ Rn and matrix M ∈ Rn×n determine a system (q, M) of linear inequal-
ities and a nonlinear equation called a linear complementarity problem (LCP). That system
is

x ≥ 0, (1)

q + Mx ≥ 0, (2)
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xT(q + Mx) = 0. (3)

The LCP asks for a solution or evidence that no solution exists. An algorithm that accomplish
this is said to process the problem.

When conditions (1) and (2) have a solution, they (and the problem) are said to be fea-
sible. The problem is solvable if there exists a vector x simultaneously satisfying all three
conditions. The notion of solvability is, in principle, independent of algorithms that solve
the problem, but in some cases, solvability is actually established by means of one or more
algorithms. For some choices of q and M , the LCP (q, M) can be feasible but not solvable.
Thus, an algorithm that processes (q, M) must be able to detect the nonexistence of a solu-
tion. Fortunately, there are some matrix classes having the property that feasibility implies
solvability. Accordingly, the following two sets are of interest:

FEA (q, M) = {x : x satisfies (1) and (2)} and

SOL (q, M) = {x : x satisfies (1), (2) and (3)}.

For M ∈ Rn×n and every α ⊆ {1, . . . , n} there is a corresponding principal submatrix
of M denoted Mαα . The determinant of a principal submatrix is called a principal minor
of M . When the principal submatrix is nonsingular (principal minor is nonzero), there is a
corresponding principal pivotal transformation ℘α given by

⎡
⎣

Mαα Mαᾱ

Mᾱα Mᾱᾱ

⎤
⎦ ℘α

−→

⎡
⎣

M−1
αα −M−1

αα Mαᾱ

Mᾱα M−1
αα Mᾱᾱ − Mᾱα M−1

αα Mαᾱ

⎤
⎦ .

For x ∈ Rn, the index set

supp (x) = {i : xi �= 0}

is called the support of x . Clearly supp (x) = ∅ if and only if x = 0. The definition of one
of the matrix classes, P∗(κ), given below requires the index sets

I+(x) = {i : xi > 0} and I−(x) = {i : xi < 0}

both of which are subsets of supp (x).
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3 List of matrix classes

See Table 1.

Table 1 List of matrix classes

M ∈ if and only if Common name Source Note

A M ∈ RA ∩ CA. Adequate [21]

BG Mαα = 0, Mᾱᾱ = 0, Mαᾱ >

0, Mᾱα > 0.

Bimatrix game [28] Na

CA M ∈ P0 and ∀α, M.α has linearly
independent columns only if
det Mαα > 0.

Column adequate [21] Nb

CSU xi (Mx)i ≤ 0 ∀i 
⇒ xi (Mx)i =
0 ∀i .

Column sufficient [11]

C xTMx > 0, ∀ nonzero x ≥ 0. Strictly copositive [29]

C0 xTMx ≥ 0, ∀x ≥ 0. Copositive [29]

C+
0 M ∈ C0 and [ xTMx = 0, x ≥

0 ] 
⇒ (M + MT)x = 0.

Copositive-plus [26] Nc

C∗
0 M ∈ C0 and x ∈ SOL (0, M)


⇒ MTx ≤ 0.
Copositive-star [19]

D M ∈ ⋃
d>0 L(d). [18] Nd

D∗ M ∈ ⋃
d>0 L∗(d). [18]

E ∀x ≥ 0, x �= 0, ∃i : xi >

0, (Mx)i > 0.

Strictly semimonotone [9] Ne

E∗ SOL (q, M) = {0} for all nonzero
q ≥ 0.

Strongly semimonotone [13]

E′ M ∈ E∗ \ E. [14]

E(d) if z ∈ SOL (d, M), ∃ nonzero x ≥ 0
such that y := −MTx ≥ 0 and
z ≥ x, w := d + Mz ≥ y.

[18] Nf

E∗(d) SOL (d, M) = {0}. [18]

E0 ∀x ≥ 0, x �= 0, ∃i : xi >

0, (Mx)i ≥ 0.

Semimonotone

E1 ∀ nonzero x ∈ SOL (0, M) ∃
nonnegative diagonal
matrices �, � such that
(�M + MT �)x = 0 and �x �= 0.

[15]

G M ∈ ⋃
d>0 E(d) [20] Ng

G� M ∈ G and x ∈ SOL (0, M) 
⇒
(M + MT)x = 0.

[20]

GI every column of M has at most one
nonzero entry.

[33] Nh

GNI M ∈ GI and M ≤ 0. [33]

H ∃d > 0 such that ∀i,
mod mii di >

∑
j �=i mod mi j d j .

[30] Ni

H+ M ∈ H and mii > 0 ∀i . Nj

INS ∃ positive integer k such that
∀q ∈ int K (M), (q, M) has exactly
k solutions.

[33]

K M ∈ P ∩ Z. [17] Nk
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Table 1 continued

M ∈ if and only if Common name Source Note

K0 M ∈ P0 ∩ Z. [17]

Kh M ∈ P ∩ Zh. Hidden-K

L M ∈ E0 ∩ E1. [15] Nl

L∗ M ∈ E. Strictly semimonotone [13]

L∗ SOL (q, M)={0},
for all nonzero q ≥ 0.

[13]

L̄ Mαα ∈ L, ∀α. Completely-L [2]
Lf All principal pivotal transforms of M

belongs to L.
Fully-L [2]

L(d) E(d) ∩ E(0). [18]

L∗(d) E∗(d) ∩ E∗(0) [18]

N det Mαα < 0, ∀α. [32] Nm

P det Mαα > 0, ∀α. Nn

P0 det Mαα ≥ 0, ∀α.

P1 M ∈ P0 and det Mαα = 0 for just one α. [33] No

P∗(κ) (1 + 4κ)
∑

i∈I+(x) xi (Mx)i +∑
i∈I−(x) xi (Mx)i ≥ 0, ∀x .

[25]

P∗
⋃

κ≥0 P∗(κ). [25] Np

PD xTMx > 0, ∀x �= 0. Positive definite

PSD xTMx ≥ 0, ∀x . Positive semidefinite Nq

Q SOL (q, M) �= ∅, ∀q. Nr

Q0 ∀q FEA (q, M) �= ∅ 
⇒ SOL (q, M) �= ∅. Ns

Q̄ Mαα ∈ Q, ∀α. Completely-Q [7] Nt

R ∃d > 0 such that SOL (τd, M) = {0} ∀τ ≥ 0. Regular [23]

R0 SOL (0, M) = {0}. [18]

R1 SOL (q, M) is bounded ∀q ∈ int pos [−M I ]. [1]

R2 SOL (q, M) is bounded ∀q ∈ int K (M). [1]

RA MT ∈ CA. Row adequate [21] Nu

RSU MT ∈ CSU. Row sufficient [11]

S ∃x ≥ 0 such that Mx > 0.

S0 ∃x ≥ 0, x �= 0 such that Mx ≥ 0.

SU M ∈ RSU ∩ CSU. Sufficient [11]

T M has property (T). [4] Nv

T∗ FEA (0, −MT ) = SOL (0, −MT ). [1]

U q ∈ int K (M) 
⇒ (q, M) has a unique solution. [33] Nw

V ∀α, ∃�xα > 0 such that Mααxα = (0, . . . , 0, ξ)T, ξ ≤ 0. [35] Nx

W ∀α, pos CM (α) ∩ pos CM (ᾱ) = {0}. [22]

Y a generic matrix class.

Ȳ every principal submatrix of M belongs to Y. Completely-Y

Yf every principal pivotal transform of M belongs to Y. Fully-Y

Ys if M ∈ Y then SM ST ∈ Y. Sign-change invariant Y [2]
Z mi j ≤ 0 for all i �= j . [17]
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Table 1 continued

M ∈ if and only if Common Name Source Note

Z+ M ∈ Z and mii ≥ 0 for all i . Ny

Zh ∃ X ∈ Z, Y ∈ Z and nonnegative
vectors r and s such that
M X = Y, and rTX + sTY > 0.

Hidden-Z

a It is not restrictive to assume Mαᾱ > 0, Mᾱα > 0
b The conditions for membership in this class are due to Ingleton [21]. The name for it is due to Eaves [15,16]
c Lemke used this class in [26], but he did not give it a name or a notation. The name copositive plus first
appeared in [9, p. 116]. The notation C+

0 came later

d The notations D and D∗ are “new” ad hoc ways of representing classes that have a long history
e This class appears in [9] (with no name or notation) and in [15] (where it is denoted L∗). The name strictly
semimonotone was introduced by Karamardian [23]
f The vector d is arbitrary although the case where d > 0 is of special interest. Garcia [18] notes that E(0) = L2
which is now denoted E1
g The symbol used for this class refers to C.B. Garcia who introduced it (without the notation) in [18]
h It appears that this matrix class does not lie within any interesting matrix class. See Stone [33, p. 142]
i See [12, 3.13.7]
j Such matrices are diagonally stable and belong to P. See [12, 3.3.15]. The notation H+ may originate in this
document
k At one time, the notation K was used for what is now denoted by Q0. See for example, [31, p. 576]. The
wealth of information in [17] did much to influence the change
l See also [16]. Eaves used the calligraphic notation L for what we denote as L. Moreover, he defined L as
L1 ∩ L2 whereas in our notation L1 = E0 and L2 = E1. It may have been that Eaves was honoring Lemke,
and vice versa
m See also [24] and [33]
n The first use of this class in the LCP context is believed to be in [5], a portion of which is published in [6]
(Although [5] and [6] have the same title, the article is extracted from the thesis.)
o The first appearance of this class in the periodical literature occurs in [10]
p This class equals SU. See [34]
q Positive semidefinite matrices are sometimes called monotone
r Garcia [18] was the first to use the notation Q for this class
s The class Q0 was defined by Parsons [31], but he denoted it K
t This class is known to be the same as E (strictly semimonotone matrices) and V
u The conditions for membership in this class are due to Ingleton [21]. The name for it is due to Eaves [15,16]
v An n × n matrix M has property (T) if for all α ⊆ {1, . . . , n} the existence of a solution to the linear
inequality system Mααzα ≤ 0, Mᾱαzα ≥ 0, zα > 0 implies the existence of a solution to the system
yT
α0

Mαα = 0, yT
α0

Mα0ᾱ ≤ 0, 0 �= yα0 ≥ 0 where α0 = {i ∈ α : Miαzα = 0}
w See also [10]
x It was shown in [7] that V = E = Q̄
y Stone [33] used the notation Z̄ for this class, but nowadays that notation would signify completely-Z (although
it must be conceded that Z is a complete class so that Z̄ = Z). Stone noted that what his Z̄ had been
denoted L
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4 Structural properties

See Table 2.

Table 2 Complete, Full, Reflective, and Sign-invariant matrix classes in the linear complementarity problem

Class Complete Full Reflective Sign-invariant

A Yesa No Yes Yes

BG Yes No Yes No

C Yes No Yes No

CA Yes No No Yes

CSU Yes Yesb No Yes

C0 Yes No Yes No

C+
0 Yes No Yes No

E Yes No Yes No

E0 Yes No Yes No

E1 No Yes No Noc

K Yes No Yes No

K0 Yes No Yes No

N Yes No Yes Yes

P Yes Yes Yes Yes

P0 Yes Yes Yes Yes

P1 No Yes Yes Yes

P∗ Yes Yes Yes Yes

PD Yes Yes Yes Yes

PSD Yes Yes Yes Yes

Q No Yes No No

Q0 No Yes No No

RA Yes No No Yes

RSU Yes Yesd No Yes

Z Yes No Yes No

Z+ Yes No Yes No

Complete: Every principal submatrix of every member of the class is a member of the class. Full: Every
principal pivotal transform of every member of the class is a member of the class. Reflective: The transpose
of every member of the class is a member of the class; Sign-invariant: For every member M of the class,
and every conformable sign-changing matrix S, the matrix SM S belongs to the class. The property S2 = I
implies S = S−1, whence M → SM S is a similarity transformation
a Ingleton [21, p. 522] notes this property in (1.2.4) but does not use our term for it. A few lines below (1.2.4)
he introduces Definition 1.3 to the effect that a matrix is completely adequate if it is adequate with respect to
every orthonormal basis
b See [8]
c The observation that this class is not sign-change invariant (see the list in Sect. 4) is due to Adler and Wong
[3]
d See [8]
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5 Matrix class inclusion map

See Fig. 1.

Fig. 1 Matrix class inclusion map. Arrows for implied inclusions are omitted
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